## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bis[ $\mu$ -2-(3-pyridyl)-1*H*-benzimidazole- $\kappa^2 N:N'$ ]disilver(I) dinitrate

#### Chang-Kun Xia, Wen Wu, Qiu-Yun Chen and Ji-Min Xie\*

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: jsuxie@163.com

Received 5 October 2007; accepted 21 October 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.023; wR factor = 0.063; data-to-parameter ratio = 15.2.

The title compound,  $[Ag_2(C_{12}H_9N_3)_2](NO_3)_2$ , was prepared under hydrothermal conditions. The structure consists of binuclear complex cations and nitrate anions. The two Ag<sup>I</sup> atoms, each in a geometry somewhat distorted from linear, are bridged by two 2-(3-pyridyl)benzimidazole ligands *via* pyridyl and imidazole N atoms, forming a centrosymmetric cyclic dimer. A three-dimensional network is constructed *via* N-H···O hydrogen bonds and weak Ag···O interactions  $[Ag \cdot \cdot O = 2.686 (13)-2.847 (7) Å]$ , as well as by offset  $\pi - \pi$ interactions between the pyridyl and imidazolyl rings with a nearest atom-to-atom distance of 3.40 (2) Å and a centroid-tocentroid distance of 4.06 (3) Å.

#### **Related literature**

For related literature, see: Alcade et al. (1992); Chen et al. (2005); Su et al. (1999).



#### Experimental

Crystal data  $[Ag_2(C_{12}H_9N_3)_2](NO_3)_2$  $M_r = 730.20$ 

Triclinic,  $P\overline{1}$ a = 8.317 (3) Å

| b = 9.097 (4) A                   | Z = 1                                            |    |
|-----------------------------------|--------------------------------------------------|----|
| c = 9.934 (4) Å                   | Mo $K\alpha$ radiation                           |    |
| $\alpha = 105.949 \ (18)^{\circ}$ | $\mu = 1.64 \text{ mm}^{-1}$                     |    |
| $\beta = 96.797 (15)^{\circ}$     | T = 293 (2) K                                    |    |
| $\gamma = 116.892 (11)^{\circ}$   | $0.50 \times 0.45 \times 0.40 \text{ mm}$        |    |
| $V = 618.2 (5) \text{ Å}^3$       |                                                  |    |
| . /                               |                                                  |    |
| Data collection                   |                                                  |    |
| Rigaku Mercury CCD                | 4673 measured reflections                        |    |
| diffractometer                    | 2758 independent reflections                     |    |
| Absorption correction: m          | ulti-scan 2586 reflections with $I > 2\sigma(I)$ |    |
| (CrystalClear: Rigaku.            | 2000) $R_{int} = 0.013$                          |    |
| $T_{\min} = 0.444, T_{\max} = 0.$ | 528                                              |    |
| initia ( ) initia                 |                                                  |    |
| Refinement                        |                                                  |    |
| $R[F^2 > 2\sigma(F^2)] = 0.024$   | 181 parameters                                   |    |
| $wR(F^2) = 0.063$                 | H-atom parameters constraine                     | ed |
| S = 1.04                          | $\Delta \rho = 0.59 \text{ e} \text{ Å}^{-3}$    |    |
| 5 1.0.                            | $-r_{\rm max} = 0.09 \text{ cm}^2$               |    |

#### Table 1

2758 reflections

Selected geometric parameters (Å, °).

| Ag1-N2                  | 2.1650 (19)        | Ag1-N1 <sup>i</sup> | 2.1994 (19) |
|-------------------------|--------------------|---------------------|-------------|
| N2-Ag1-N1 <sup>i</sup>  | 154.25 (7)         |                     |             |
| Symmetry code: (i) -x - | +2, -v + 2, -z + 2 |                     |             |

 $\Delta \rho_{\rm min} = -0.63 \ {\rm e} \ {\rm \AA}^{-3}$ 

#### Table 2

#### Hydrogen-bond geometry (Å, °).

| $N3-H3B\cdotsO1^{ii} 0.86 2.01 2.860 (3) 172$ | $D - H \cdots A$      | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------------|-----------------------|------|-------------------------|--------------|---------------------------|
|                                               | $N3-H3B\cdotsO1^{ii}$ | 0.86 | 2.01                    | 2.860 (3)    | 172                       |

Symmetry code: (ii) x, y - 1, z.

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1994); software used to prepare material for publication: *SHELXL97*.

We thank the Social Development Foundation of Jiangsu Province, China (grant No. BS2006038) and the Social Development Foundation of Zhenjiang, Jiangsu Province, China (grant No. SH2006057) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2089).

#### References

Alcade, E., Dinares, I., Perez-Garia, L. & Roca, T. (1992). Synthesis, pp. 295–398.

Chen, L. J., Xia, C. K., Zhang, Q. Z., Yang, W. B. & Lu, C. Z. (2005). Inorg. Chem. Commun. 8, 858–861.

Rigaku (2000). CrystalClear. Version 1.35. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1994). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Su, C. Y., Yang, X. P., Liao, S., Mak, T. C. W. & Kang, B. S. (1999). Inorg. Chem. Commun. 2, 383–385. supplementary materials

Acta Cryst. (2007). E63, m2820 [doi:10.1107/S1600536807052129]

## Bis[ $\mu$ -2-(3-pyridyl)-1*H*-benzimidazole- $\kappa^2 N:N'$ ]disilver(I) dinitrate

#### C.-K. Xia, W. Wu, Q.-Y. Chen and J.-M. Xie

#### Comment

The 2-(3-pyridyl)benzimidazole ligand acts as terminal (Chen *et al.*, 2005) or bidentate ligand (Su *et al.*, 1999) in metal complexes. Herein we report the synthesis and structure of a binuclear silver(I) complex with 2-(3-pyridyl)benzimidazole.

In the title compound, the centrosymmetric binuclear cyclic complex contains two Ag<sup>I</sup> atoms bridged by two 2-(3-pyridyl)benzimidazole ligands *via* pyridyl and imidazole N atoms in a head-to-end mode (Fig. 1). The Ag<sup>I</sup> atom is in an approximate linear coordination geometry. The nitrate anion acts as a counter ion and is weakly coordinated to Ag<sup>I</sup> atoms  $[Ag1\cdotsO1 = 2.686 (13) \text{ Å}, Ag1\cdotsO3 = 2.847 (7)\text{ Å} and Ag1\cdotsO2^i = 2.782 (5) \text{ Å}; symmetry code: (i) <math>1 - x, 2 - y, 2 - z]$ . The Ag1 $\cdots$ O1 and Ag1 $\cdots$ O3 interactions as well as N3--H $\cdots$ O1 hydrogen bonds connect the binuclear units into a one-dimensional chain (Fig. 2). Crystal packing is stabilized by the Ag1 $\cdots$ O2<sup>i</sup> interactions and offset  $\pi$ - $\pi$  interactions between the chains (Fig. 3).

#### Experimental

A solution of AgNO<sub>3</sub> (0.104 g, 0.61 mmol), 2-(3-pyridyl)benzimidazole (Alcade *et al.*, 1992) (0.14 g, 0.61 mmol) and H<sub>2</sub>O (15 ml) was stirred under ambient condition. The mixture was sealed in a 25 ml Teflon-lined stainless steel vessel, heated at 383 K for 3 d and then cooled to room temperature. The resulting product was collected by filtration, washed with distilled water and dried in air (yield 80%).

#### Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and N—H = 0.86Å and  $U_{iso}(H)$  =  $1.2U_{eq}(C,N)$ .

#### **Figures**



Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 2 - x, 2 - y, 2 - z.]



Fig. 2. A view of the one-dimensional chain. H atoms have been omitted for clarity. Hydrogen bonds and weak Ag…O interactions are shown as dashed lines.



Fig. 3. The crystal packing of the title compound. Hydrogen bonds and weak Ag…O interactions are shown as dashed lines.

## Bis[ $\mu$ -2-(3-pyridyl)-1*H*-benzimidazole- $\kappa^2 N$ : $N^1$ ]disilver(I) dinitrate

| Crystal data                                                                                                    |                                              |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| [Ag <sub>2</sub> (C <sub>12</sub> H <sub>9</sub> N <sub>3</sub> ) <sub>2</sub> ](NO <sub>3</sub> ) <sub>2</sub> | Z = 1                                        |
| $M_r = 730.20$                                                                                                  | $F_{000} = 360$                              |
| Triclinic, PT                                                                                                   | $D_{\rm x} = 1.962 {\rm ~Mg~m}^{-3}$         |
| Hall symbol: -P 1                                                                                               | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| a = 8.317 (3)  Å                                                                                                | Cell parameters from 1908 reflections        |
| b = 9.097 (4)  Å                                                                                                | $\theta = 2.7 - 27.5^{\circ}$                |
| c = 9.934 (4)  Å                                                                                                | $\mu = 1.64 \text{ mm}^{-1}$                 |
| $\alpha = 105.949 \ (18)^{\circ}$                                                                               | T = 293 (2)  K                               |
| $\beta = 96.797 \ (15)^{\circ}$                                                                                 | Prism, colorless                             |
| $\gamma = 116.892 \ (11)^{\circ}$                                                                               | $0.50\times0.45\times0.40~mm$                |
| $V = 618.2 (5) \text{ Å}^3$                                                                                     |                                              |

#### Data collection

| Rigaku Mercury CCD<br>diffractometer                              | 2758 independent reflections           |
|-------------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                          | 2586 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                           | $R_{\rm int} = 0.013$                  |
| T = 293(2)  K                                                     | $\theta_{\text{max}} = 27.5^{\circ}$   |
| ω scans                                                           | $\theta_{\min} = 2.7^{\circ}$          |
| Absorption correction: multi-scan<br>(CrystalClear; Rigaku, 2000) | $h = -10 \rightarrow 6$                |
| $T_{\min} = 0.444, T_{\max} = 0.528$                              | $k = -10 \rightarrow 11$               |
| 4673 measured reflections                                         | $l = -12 \rightarrow 12$               |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                                |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.024$ | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.063$               | $w = 1/[\sigma^2(F_o^2) + (0.0396P)^2 + 0.1553P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.04                 | $(\Delta/\sigma)_{\text{max}} = 0.002$                                              |
| 2758 reflections                | $\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$                               |

#### 181 parameters

$$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$$

Primary atom site location: structure-invariant direct Extinction correction: none

|      | x           | У             | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|-------------|---------------|---------------|-------------------------------|
| Ag1  | 0.69487 (2) | 0.909984 (19) | 0.836791 (18) | 0.03879 (8)                   |
| C1   | 1.0525 (3)  | 0.7222 (3)    | 1.1866 (2)    | 0.0340 (4)                    |
| H1A  | 1.1496      | 0.7688        | 1.2706        | 0.041*                        |
| C2   | 0.8990 (3)  | 0.5561 (3)    | 1.1521 (2)    | 0.0349 (4)                    |
| H2A  | 0.8944      | 0.4912        | 1.2108        | 0.042*                        |
| C3   | 0.7521 (3)  | 0.4871 (3)    | 1.0294 (2)    | 0.0315 (4)                    |
| H3A  | 0.6471      | 0.3754        | 1.0046        | 0.038*                        |
| C4   | 0.7635 (3)  | 0.5871 (3)    | 0.9437 (2)    | 0.0275 (4)                    |
| C5   | 0.9260 (3)  | 0.7512 (3)    | 0.9839 (2)    | 0.0299 (4)                    |
| H5A  | 0.9368      | 0.8166        | 0.9246        | 0.036*                        |
| C6   | 0.6097 (3)  | 0.5236 (2)    | 0.8146 (2)    | 0.0278 (4)                    |
| C7   | 0.4068 (3)  | 0.5075 (3)    | 0.6448 (2)    | 0.0296 (4)                    |
| C8   | 0.2976 (3)  | 0.5400 (3)    | 0.5523 (2)    | 0.0377 (5)                    |
| H8A  | 0.3261      | 0.6549        | 0.5640        | 0.045*                        |
| C9   | 0.1461 (3)  | 0.3949 (4)    | 0.4431 (3)    | 0.0452 (5)                    |
| H9A  | 0.0698      | 0.4125        | 0.3809        | 0.054*                        |
| C10  | 0.1036 (3)  | 0.2212 (4)    | 0.4230 (3)    | 0.0485 (6)                    |
| H10A | 0.0002      | 0.1266        | 0.3476        | 0.058*                        |
| C11  | 0.2107 (3)  | 0.1873 (3)    | 0.5119 (3)    | 0.0420 (5)                    |
| H11A | 0.1839      | 0.0722        | 0.4977        | 0.050*                        |
| C12  | 0.3621 (3)  | 0.3342 (3)    | 0.6251 (2)    | 0.0320 (4)                    |
| N1   | 1.0673 (2)  | 0.8195 (2)    | 1.10372 (19)  | 0.0310 (3)                    |
| N2   | 0.5635 (2)  | 0.6242 (2)    | 0.76462 (17)  | 0.0285 (3)                    |
| N3   | 0.4925 (2)  | 0.3486 (2)    | 0.73404 (19)  | 0.0323 (4)                    |
| H3B  | 0.4988      | 0.2622        | 0.7486        | 0.039*                        |
| N4   | 0.3636 (3)  | 0.9842 (2)    | 0.83250 (19)  | 0.0333 (4)                    |
| 01   | 0.4791 (3)  | 1.0384 (3)    | 0.7610 (2)    | 0.0500 (4)                    |
| O2   | 0.2846 (3)  | 1.0683 (3)    | 0.8762 (2)    | 0.0503 (4)                    |
| O3   | 0.3345 (3)  | 0.8520 (3)    | 0.8593 (2)    | 0.0623 (5)                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|--------------|-----------------|-----------------|-------------|-------------|-------------|
| Ag1 | 0.03312 (11) | 0.02520 (10)    | 0.05195 (12)    | 0.01146 (8) | 0.00234 (8) | 0.01578 (8) |
| C1  | 0.0334 (11)  | 0.0342 (11)     | 0.0355 (10)     | 0.0180 (9)  | 0.0048 (8)  | 0.0151 (8)  |
| C2  | 0.0369 (11)  | 0.0375 (11)     | 0.0399 (10)     | 0.0203 (10) | 0.0140 (9)  | 0.0240 (9)  |
| C3  | 0.0300 (10)  | 0.0273 (10)     | 0.0393 (10)     | 0.0130 (8)  | 0.0126 (8)  | 0.0168 (8)  |
| C4  | 0.0267 (9)   | 0.0252 (9)      | 0.0341 (9)      | 0.0148 (8)  | 0.0094 (8)  | 0.0128 (7)  |
| C5  | 0.0273 (10)  | 0.0250 (9)      | 0.0389 (10)     | 0.0131 (8)  | 0.0064 (8)  | 0.0155 (8)  |
| C6  | 0.0233 (9)   | 0.0231 (9)      | 0.0351 (9)      | 0.0087 (7)  | 0.0080 (7)  | 0.0137 (7)  |
| C7  | 0.0245 (9)   | 0.0311 (10)     | 0.0333 (9)      | 0.0127 (8)  | 0.0092 (8)  | 0.0139 (8)  |

## supplementary materials

| C8  | 0.0395 (12) | 0.0449 (12) | 0.0377 (10) | 0.0259 (11) | 0.0113 (9)  | 0.0197 (9)  |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C9  | 0.0361 (12) | 0.0635 (16) | 0.0377 (11) | 0.0267 (12) | 0.0061 (9)  | 0.0207 (11) |
| C10 | 0.0313 (12) | 0.0538 (15) | 0.0387 (11) | 0.0104 (11) | 0.0001 (9)  | 0.0109 (11) |
| C11 | 0.0337 (12) | 0.0330 (11) | 0.0432 (12) | 0.0073 (10) | 0.0050 (9)  | 0.0113 (9)  |
| C12 | 0.0251 (9)  | 0.0311 (10) | 0.0347 (10) | 0.0097 (8)  | 0.0068 (8)  | 0.0140 (8)  |
| N1  | 0.0268 (8)  | 0.0253 (8)  | 0.0401 (9)  | 0.0130 (7)  | 0.0047 (7)  | 0.0134 (7)  |
| N2  | 0.0265 (8)  | 0.0256 (8)  | 0.0342 (8)  | 0.0132 (7)  | 0.0074 (7)  | 0.0128 (6)  |
| N3  | 0.0287 (9)  | 0.0229 (8)  | 0.0400 (9)  | 0.0092 (7)  | 0.0039 (7)  | 0.0135 (7)  |
| N4  | 0.0293 (9)  | 0.0276 (9)  | 0.0381 (9)  | 0.0129 (7)  | 0.0011 (7)  | 0.0117 (7)  |
| O1  | 0.0481 (10) | 0.0499 (10) | 0.0734 (12) | 0.0307 (9)  | 0.0297 (9)  | 0.0373 (9)  |
| O2  | 0.0553 (11) | 0.0530 (11) | 0.0576 (10) | 0.0381 (10) | 0.0188 (9)  | 0.0214 (9)  |
| O3  | 0.0801 (15) | 0.0443 (10) | 0.0842 (14) | 0.0360 (11) | 0.0334 (12) | 0.0418 (10) |
|     |             |             |             |             |             |             |

### Geometric parameters (Å, °)

| Ag1—N2                 | 2.1650 (19) | С7—С8                  | 1.396 (3)   |
|------------------------|-------------|------------------------|-------------|
| Ag1—N1 <sup>i</sup>    | 2.1994 (19) | C8—C9                  | 1.375 (3)   |
| C1—N1                  | 1.343 (3)   | C8—H8A                 | 0.9300      |
| C1—C2                  | 1.377 (3)   | C9—C10                 | 1.403 (4)   |
| C1—H1A                 | 0.9300      | С9—Н9А                 | 0.9300      |
| C2—C3                  | 1.381 (3)   | C10—C11                | 1.371 (4)   |
| C2—H2A                 | 0.9300      | C10—H10A               | 0.9300      |
| C3—C4                  | 1.389 (3)   | C11—C12                | 1.397 (3)   |
| С3—НЗА                 | 0.9300      | C11—H11A               | 0.9300      |
| C4—C5                  | 1.391 (3)   | C12—N3                 | 1.372 (3)   |
| C4—C6                  | 1.467 (3)   | N1—Ag1 <sup>i</sup>    | 2.1994 (19) |
| C5—N1                  | 1.336 (3)   | N3—O1 <sup>ii</sup>    | 2.860 (3)   |
| С5—Н5А                 | 0.9300      | N3—H3B                 | 0.8600      |
| C6—N2                  | 1.324 (2)   | N4—O3                  | 1.226 (3)   |
| C6—N3                  | 1.355 (3)   | N4—O2                  | 1.243 (2)   |
| C7—N2                  | 1.389 (3)   | N4—O1                  | 1.263 (3)   |
| C7—C12                 | 1.395 (3)   |                        |             |
| N2—Ag1—N1 <sup>i</sup> | 154.25 (7)  | С8—С9—Н9А              | 119.1       |
| N1—C1—C2               | 122.6 (2)   | С10—С9—Н9А             | 119.1       |
| N1—C1—H1A              | 118.7       | C11—C10—C9             | 121.6 (2)   |
| C2—C1—H1A              | 118.7       | C11—C10—H10A           | 119.2       |
| C1—C2—C3               | 119.25 (19) | C9—C10—H10A            | 119.2       |
| C1—C2—H2A              | 120.4       | C10—C11—C12            | 116.6 (2)   |
| С3—С2—Н2А              | 120.4       | C10—C11—H11A           | 121.7       |
| C2—C3—C4               | 119.00 (19) | C12—C11—H11A           | 121.7       |
| С2—С3—Н3А              | 120.5       | N3—C12—C7              | 105.85 (18) |
| С4—С3—Н3А              | 120.5       | N3—C12—C11             | 132.0 (2)   |
| C3—C4—C5               | 118.03 (19) | C7—C12—C11             | 122.1 (2)   |
| C3—C4—C6               | 121.62 (18) | C5—N1—C1               | 118.00 (18) |
| C5—C4—C6               | 120.35 (17) | C5—N1—Ag1 <sup>i</sup> | 119.02 (13) |
| N1-C5-C4               | 123.10 (18) | C1—N1—Ag1 <sup>i</sup> | 122.89 (14) |
| N1—C5—H5A              | 118.4       | C6—N2—C7               | 105.76 (16) |
| С4—С5—Н5А              | 118.4       | C6—N2—Ag1              | 130.80 (14) |

| N2—C6—N3                                | 111.85 (18)        | C7—N2—Ag1                   | 123.40 (13)  |
|-----------------------------------------|--------------------|-----------------------------|--------------|
| N2—C6—C4                                | 125.91 (18)        | C6—N3—C12                   | 107.64 (17)  |
| N3—C6—C4                                | 122.21 (18)        | C6—N3—O1 <sup>ii</sup>      | 131.71 (14)  |
| N2—C7—C12                               | 108.90 (17)        | C12—N3—O1 <sup>ii</sup>     | 120.65 (14)  |
| N2—C7—C8                                | 130.6 (2)          | C6—N3—H3B                   | 126.2        |
| C12—C7—C8                               | 120.5 (2)          | C12—N3—H3B                  | 126.2        |
| C9—C8—C7                                | 117.2 (2)          | O3—N4—O2                    | 121.6 (2)    |
| С9—С8—Н8А                               | 121.4              | O3—N4—O1                    | 119.38 (19)  |
| С7—С8—Н8А                               | 121.4              | O2—N4—O1                    | 119.00 (19)  |
| C8—C9—C10                               | 121.9 (2)          |                             |              |
| N1—C1—C2—C3                             | -1.4 (3)           | C4—C5—N1—Ag1 <sup>i</sup>   | -174.98 (14) |
| C1—C2—C3—C4                             | 0.3 (3)            | C2—C1—N1—C5                 | 0.5 (3)      |
| C2—C3—C4—C5                             | 1.6 (3)            | C2—C1—N1—Ag1 <sup>i</sup>   | 176.94 (16)  |
| C2—C3—C4—C6                             | -178.09 (18)       | N3—C6—N2—C7                 | 0.1 (2)      |
| C3—C4—C5—N1                             | -2.7 (3)           | C4—C6—N2—C7                 | -177.85 (18) |
| C6—C4—C5—N1                             | 177.04 (18)        | N3—C6—N2—Ag1                | -177.81 (12) |
| C3—C4—C6—N2                             | 148.1 (2)          | C4—C6—N2—Ag1                | 4.2 (3)      |
| C5—C4—C6—N2                             | -31.7 (3)          | C12—C7—N2—C6                | -0.2 (2)     |
| C3—C4—C6—N3                             | -29.7 (3)          | C8—C7—N2—C6                 | 178.7 (2)    |
| C5—C4—C6—N3                             | 150.54 (19)        | C12—C7—N2—Ag1               | 177.91 (13)  |
| N2—C7—C8—C9                             | -178.6 (2)         | C8—C7—N2—Ag1                | -3.2 (3)     |
| C12—C7—C8—C9                            | 0.2 (3)            | N1 <sup>i</sup> —Ag1—N2—C6  | 52.9 (2)     |
| C7—C8—C9—C10                            | -1.0 (3)           | N1 <sup>i</sup> —Ag1—N2—C7  | -124.70 (17) |
| C8—C9—C10—C11                           | 0.3 (4)            | N2—C6—N3—C12                | 0.0 (2)      |
| C9—C10—C11—C12                          | 1.1 (4)            | C4—C6—N3—C12                | 178.08 (17)  |
| N2—C7—C12—N3                            | 0.2 (2)            | N2—C6—N3—O1 <sup>ii</sup>   | -178.99 (13) |
| C8—C7—C12—N3                            | -178.82 (18)       | C4—C6—N3—O1 <sup>ii</sup>   | -0.9 (3)     |
| N2-C7-C12-C11                           | -179.67 (19)       | C7—C12—N3—C6                | -0.2 (2)     |
| C8—C7—C12—C11                           | 1.3 (3)            | C11—C12—N3—C6               | 179.7 (2)    |
| C10-C11-C12-N3                          | 178.2 (2)          | C7—C12—N3—O1 <sup>ii</sup>  | 178.99 (12)  |
| C10-C11-C12-C7                          | -1.9 (3)           | C11—C12—N3—O1 <sup>ii</sup> | -1.1 (3)     |
| C4—C5—N1—C1                             | 1.6 (3)            |                             |              |
| Symmetry codes: (i) $-x+2, -y+2, -z+2;$ | (ii) $x, y-1, z$ . |                             |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                            | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |
|------------------------------------|-------------|-------|--------------|---------|
| N3—H3B···O1 <sup>ii</sup>          | 0.86        | 2.01  | 2.860 (3)    | 172     |
| Symmetry codes: (ii) $x, y=1, z$ . |             |       |              |         |









Fig. 3

